
UNCLASSIFIED n ata Ent&red)
ION PAGE READ INSTRUCTIONS

BEFORE COM-PLETEING FORM

A D -A 197 340 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: MIPS 30 June '87 to 30 June '88

Computer Systems. MIPS/VADS, Version 1.21 6. PERFORMING ORG. REPORT NUMBER

MIPS M/500
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBERs)
Wright-Patterson AFB OH 45433-6503

9. PERFORMING ORGANIZATION AND ADDRESS to. PROGRAM ELEMENT, PROJECT, TASK

Wright-Patterson AFB OH 45433-6503 AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 30June 1987
United States Department of Defense 13. NUMBER O PAb5
Washington, DC 20301-3081 35 p.
14. MONITORING AGENCY NAME & ADDRESS(If different from ControllingOffice) 15. SECURITY CLASS (of this report)
Wright-Patterson AFB OH 45433-6503 UNCLASSIFIED

15a. USFICATIONDOWNGRADING

N/A
16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED DTIC
nEZLECTE

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

MIPS/VADS, Version 1.21, MIPS Computer Systems, Wright-Patterson AFB,
MIPS M/500 under UMIPS-BSD 4.3, Release 2.0 (host and target). IACVC 1.8. .

DD 'u" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1=

AVF Control Number: AVF-VSR-113.0987
87-05-22-MIP

Ada® COMPILER
VALIDATION SUMMARY REPORT:

MIPS Computer Systems
MIPS/VADS®, Version 1.21

MIPS M/500

Completion of On-Site Testing:
30 June 1987 Accesion For

DTIC TAB
Unannounced Li

Prepared By: Justficatio:n

Ada Validation Facility
ASD/SCOL By "a,

Wright-Patterson AFI OH 45433-6503 UIt -t i: rtion
Av];aU 4:y Coc.-s

AvaA drldforDist t-.. l

Prepared For:
Ada Joint Program Office Al N

United States Department of Defense A-
Washington, DC

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

®MIPS is a registered trademark of MIPS Computer Systems.

'4VADS (Verdix Ada Development System) is a registered trademark
of Verdix Corporation.

,1
* . p S- -

0

+ Place NTIS form here +

I

I.V

pr

Ada Compiler Validation Summary Report:

Compiler Name: MIPOVADS"' Version 1.21

Host: Target:
MIPS M/500 MIPS M/500
under UMIPS-BSD 4.3, under UMIPS-BSD 4.3,
Release 2.0 Release 2.0

Testing Completed 30 June 1987 Using ACVC 1.8 9

This report has been reviewed and is approved. 0

Ada Validation Facility 0
Steven P. Wilson
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

ia Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada JQat Program Office S
Virginia L. Castor

Director
Department of Defense
Washington DC

OAda is a registered trademark of the United States Government V..

(Ada Joint Program Office).

®MIPS is a registered trademark of MIPS Computer Systems.

®VADS (Verdix Ada Development System) is a registered trademark

of Verdix Corporation.

EXECUTIVE SUMMARY k
2h-. Validation S3ima.j Report (VSR) summ±r,.zes the .- sllts and c ns
af validation ti erformed on the MIPS/VADS, Version 1.21, ising
Version 1.8 of .'e Ada" Compiler Validation Capability (ACVC). The
MIPS/VADS is hoste, on a MIPS M/500 operating under UM.LPS-BSD 4l.3, Release
2.0. Progra:ms pror:eised by this compiler Lu.,y be ex.cuted on a HIPS 11/500,
),.q',-ing unde" UMIPS-B.SD 4.3, Rel.e~se 2.0.

'%, Wi e testLEg was performed 29 Juiu 1987 through 30 i'rn, 137 at .1PS
Co-oputer Systems, Sunnyvale CA, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2210 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 170 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2210 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
resi,*9 of Class L tests were analyzed for correct detection of errors.
There were eight of the processed tests determined to be inapplicable. The
remaining 2202 tests were passed.

The results of validation are summarized in the following table:

RESULT ChAPTER TOTAL

4 6 10 11 12 114

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD- 1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

i

%-I~~~~~. X_, ~rKAA

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE Ov THIS VALIDATION SUMMARY REPOPT . -2
1.2 US7), THiS VALIDATICN 3U',AA 'L REPOR 1-2
1.3 REFI,.; .. ES i-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSESI... 1-4

':' f 2 CONFIGURATION INFORMATION

2.1 CONFIGU, ATEON TE6TED2-1
2.2 IMPLEMENTATION CHARACTERLSTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RE3ULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3.2
3.6 SPLIT TESTS 3-3
3.7 ADDITIONAL TESTING INFORMATION3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method3-4
3.7.3 Test Site 3-4

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

y

I

C(HAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) dez3Qribes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.

This report explains all technical terms used within it and thoroughly

reports the results of testing this compiler using the Ada Compiler

Validation Capability (ACVC). An Ada compiler must be implemented

according to the Ada Standard, and any implementation-dependent features

must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that is

not in the Standard.'

Eveni though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.

The Ada Standard permits some implementation dependencies--for example, the

maximum length of identifiers or the maximum values of integer types.

Other differences between compilers result from characteristics of

particular operating systems, hardware, or implementation strategies. All

of the dependencies observed during the process of testing this compiler

are given in this report.

The information in this report is derived from the test results produced

during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and

evaluating the results. -The purpose of validating is to ensure conformity

of the compiler to the Ada Standard by testing that the compiler properly

implements legal language constructs and that it identifies and rejects

illegal language constructs. The testing also identifies behavior that is

implementation dependent but permitted by the Ada Standard. Six classes of

tests are used. These tests are designed to perform checks at compile

time, at link time, and during execution.

1-1

INTRODUCTION

I. PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
con '1.4r that- do not conform to the Ada St:mdard

• To attempt to identify any ,oAusupported language constructs
required by the Ada Standard

" To determine Lhat the impl~imentation-dependent bphavior is allowed
by the Ada StAndard

Oc.ing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
29 June 1987 through 30 June 1987 at MIPS Computer Systems, Sunnyvale CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with Hh,. national laws of th: originating .iountry, the AVO may
make full and free pu blic disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

RXIMPNP P,

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1301 ; 3eriregard Street

Alexaniria VA 22? ; 1

1.3 REFERENCES

1. Reference Manual Cor the Ada Programminf Language,
ANSI/MIL-STD-1819A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of provrms
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIl.-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Pa-,ied test A test for which a compiler generates the expected result.

.et The compu .ec . hicn a couia),er a ,ode.

A program that checks a compi _c''i confortnity regarding a
particular feature or feature , co the Ada Standard. In the
context of this report, the term is used to des'gnate' a
single test, whi h may comprise one o-r *ore files.

40L :, C A tes; Voud to be inccrect .'bl not jeid to check ,,fil'ormity
test to the Ada language nn.,ification. A test may be incorrect

because it has an invalid tesL objective, fails to meet its
test objective, or contains illegal or erroneous use of *he
language.

1.5 ArVC TEST CLASS7S

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and ill7il Ada programs structured into si< test
classes: A, B, C, D, E, and L. he first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1 -4

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
1orp~ler is exceeded, the test is classified as inapplicable. if a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAiI.1) message during execution.

Each Class E test is self-checkin mnd produces a NOT APPLICABi, PAS 4D,
or FAILED message when it is ct iled and executed. However, the Ada ..0
Standard permits an implementation to reject programs containing some 10

features qddrIqsd by Class E tests luring compilation. 17hereforo, a Class
test is passed by t compiler if it is compiled successfully and P,'.er!tes

pooduce a 'AS2:.4) mp',)Age, or i. U iq rejected by 'he c!,ule" for ..
,thle reascr

Cl-_a L tests chtk that incomplete ov illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execcte. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before anyr
declarations in the main program or any units referenced by the main
program are elaborated.

Twc library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of thp executable tests. The package REPORT
provides the mechanism by which executable tests report PA3ED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some umpiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examine!d
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values-for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementatior is
considered each time the implementation is ilidated. A test thY !
inapplicable for one validation is not no-essarily inapplicable for a
subsequent validation.

1-5

1%t

WY,*~

INTRODUCTION

Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

p

1-6

-Irk

- - W

CHAPTER 2

CONFIGURATION INFORMATION

CONFIGURATION T;.3ED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: MIPS/VADS, Version 1.21

ACVC Version: 1.8

Certificate Number: 370628W1.08107

Host Computer:

Machine: MIPS M/500

Operating System: UMIPS-BSD 4.3, Release 2.0

Memory Size: 8 megabytes

Target Computer:

Machine: MIPS M/500

Operating System: UMIPS-BSD 4.3, Release 2.0

Memory Size: 8 megabytes

2-1

..

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
t differ. Class D and E tests specificall4 -heck for such implementation
differences. Howev,', tests in other classes also characterize an
implementation. This ,,owpiler is characterized by the following
interpretations of the Ada Standard:

" Capacities.

The compiler correctly processes tests containing Loop statements
nested '- 65 levels, blo!' :3tatements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SiSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4A002B, DIIA004A, and
D4AO04B.)

" Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, LONGFLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001C and B86001D.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

• Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONS'IRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEGER' LAST and/or SYST14.,A'{fINT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array subtype is
declared. (See te.-: C52104Y.)

A oull array with one dimonsion of i.ngth greater than
INTEGER'LAST may raise NUMERIC ERROR Ur ONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the deolaration. However, lengths must match in array
slice assigniments. ',bi inplementation raines NUMERIC-ERROR when
the array type is declare d. (Se '.est i-5 ?103Y,)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediato goope, or it may re feet the function declaration.
Tf it a,-epi. the function declaration. the use of the enumeration
literal's identifier denotes the ,inction. This implementation
rejects th declaration. (See test E6J01D.)

Representation nlaunes.

The Ada Standa'd does aot -equirt i implementation to support
,-epresentatio- clausos. Ef ; teprusentation clause iz not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE SIZE for tasks,
'STORAGE SIZE for collections, and 'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear to be supported. (See tests C55B16A, C87B62A,
C87B62B, C87B62C, and BC1002A.)

" cagmas.

The pragma INLINE is supported for functions and procedures. (See
tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants. The package
DIRECT 10 can be instantiated with unconstrained array types and
record types with discriminants without defaults. (See tests
AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode. M

(See test EE3102C.)

More than one internal file can be associated with each external
file for text I/O for both reading and writing. (See tests
CE3111A..E (5 tests).)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing. (See tests
CE2107A..F (6 tests).)

2-4

- - - - - - - -- - -- ~ ~

CONFIGURATION INFORMATION

An external file associated with more than one internal file can
be deleted. (See test CE21lOB.)

Temporary sequential and direct files are given a name. Temporary
files given names are deleted when they are closed. (See tests
CE2108A and CE21O8C.)

Generios.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic pK-1-ae liroiarati.-uns am, bodies can !,- orapiled in
separate comp.I.ations. (See tests CA2009C and BC3205D.)

2-5

QUM '

CHAPTEH 3

TEST INFORMATION

3.1 TEST RESULTS

Verjion 1.8 of the ACVC contains 2399 tests. When validation testing of
MIPS/VADS was performed, 19 tests had been withdrawn. The remaining 2380
tests were potentially applicable to this validation. The AVF determined
that 178 tests were inapplicable to this implementation, and that the 2202
applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 69 865 1192 17 13 46 2202

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 176 0 0 0 178

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

-.2 3 4 5. 6 7 _ 8 9 10 11 12 14

Passed 102 ?52 334 244 16i 97 138 1 130 30 218 233 2202

Failed 0 0 0 0 3 0 0 0 0 0 0 0 0

tnapplicable 124 73 8b 3 0 0 1 1 0 0 0 0 178

WitAdr.awn 0 5 5 0 0 1 1 2 4 0 1 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 teats were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation is not necessarily inapplicable for a subsequent attempt. For
this validation attempt, 178 tests were inapplicable for the reasons
indicated:

" C34001E, B52004D, B55B09C, and C55BO7A use LONGINTEGER which is
not supported by this compiler.

• C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

3-2

TEST INFORMATION

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package TEXTIO is dependent on the package
SYSTEM.

C96005B checks implementations for which the smallest and largest
values in type WLURATION ire dift' ent (com the smallest and
largest values in DURATION's base type. This is no;. 'ho case for
this implementation.

J he following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35705L.Y (14 t'sts)
C35106T ,.Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Y (14 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45424L..Y (14 tests)
C45521L..Z (15 tests) C45621L..Z (15 tests)

3.A SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Aay Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 19 Class B tests:

B24204A B37201A B67001B
B24204B B38008A B67001C
B24204C B41202A B67001D
B2AOO3A B44001A B91003B
B2AOO3B B64001A B95001A
B2A0O3C B67001A B97102A
B33301A

3-31

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prr'oi to validation, a set of test results for ACVC Version 1.8 produced by
, 'S/VADS was submitted to the AVF by the applicant for review.

- ; these results %.ionsL.,ated that the !,)(,iler successfully
.assed -11 .applicable tests, and that the compi, r *hihtte,; '.he expected
behavior on all inapplicable tests.

';-t Method

uf the MIPS/VADS using AUVC Version 1.8 was conducted on-site by a
validaLion team from the AVF. The configuration consisted of a MIPS M/500
)perattng under UMIPS-BSD 4.3, Release 2.0.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded onto a VAX 8600 and then S
transferred to a MIPS M/500 computer using Ethernet. After the test files
were loaded to disk, the full set of tests was compiled and linked on the
MIPS M/500, and all executable tests were run on a MIPS M/500. Results
were printed from the MIPS M/500.

fh. ;compiler was tested using command scripts provided by MIPS Computer
Systems and reviewed by the validation team.

Tests were compiled, linked, and executed (as appropriate) using two
identical computers. Test output, compilation listings, and job logs were
captured on cartridge tapes and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at MIPS Computer Systems, Sunnyvale CA, on 28
June 1987, and departed after testing was completed on 30 June 1987.

3-4
limlk'

APPENDIX A

CONFORMANCE STATEMENT

MIPS Computer Systems nas submitted the following
declaration of conformance concerning the MIPS/VADS.

A-1

-~~~r v5. .~* W Vt. Vs~

DECLARATION OF CONFORMANCE

Compiler Implementor: MIPS Computer Systems
Ada* Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.8

13a3e Configuration

Base Compiler Name: MIPS4VAD, \"ersion: 1.21
Host Architecture ISA: MIPS Nl500 OS&VER # UMIPS-BSD 1.3, Relcnse 2 0
Target Architecture ISA: MI'S Mi.300 OS&VER #: UMIPS-BSD 4.3. lelease 2.0

Implernentor's Declaration

1, the undersigned, representing MIPS Computer Systems, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler listed in this
declaration. I declare that MIPS Computer Systems is the owner of record of the Ada language
compiler listed above and, as such, is responsible for maintaining said compiler in conformance
to ANSI,/MIL-STD-1815A. All certifica tes and registrations for Ada langliage compiler listed in
this declaration shall be made only in the owner's corporate name.

- .. ~Date:- L) c >2 ____

SM 'S Comn uter Systems
arry Weber, Director of Languages

Owner's Declaration

I, the undersigned, representing MIPS Computer Systems, take full responsibility for implemen-
tation and maintenance of the Ada compiler listed above, and agree to the public disclosure of
the final Validation Summary Report. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A.

Date: (o1 0 '"
PS Comp 4terystems

Larry Weber, irector of Languages

®Ada is a registered trademark of the United States Government (Ada Joint Program Office).

"'MIPS is a registered trademark of MIPS Computer Systins.

*VADS (Verdix Ada Development System) is a registered trademark of Verdix Corporation.

APPENDIX B

APPENDIX F OF THE Ada STANDARD

1he oly allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of m
the MIPS/VADS, Version 1.21, are described in the following sections which
discuss topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Implementation-specific portions of the package
STANDARD are also included in this appendix.

pack.,4ge STANDARD .s I

type INTEGER is range -2 147 483 648 .. 2_147_483647;
type SHORT INTEGER is range -32 768 .. 32-767;
type TINYINTEGER is range -128-.. 127;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONGFLOAT is digits 15

range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 6.10351E-05
range -131072.00000 .. 131071.99993;

end STANDARD;

B-1

......

- .u-. Irv 1- . l=,,

ATTACHMENT 11

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. ,,HAREIODY Pragma
The ',.IAREBODY p.agma takes the name of a generic instantiation or a generic unit as
the fi. ,trgu,Tcnt and (..c of the identifiers TRtiV or FAISE as the second argument. This
pragnia s only allowed immediately at the place of a declarative item in a declarative part
or package specification. or after a library unit in a compilation, but before any subsequent
compilation unit.
When the f irst argument is a generic unit the pragma applies to all instantiations of that
generic. When the first argument is the name of a generic instantiation the pragma applies
only to the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic
instantiation with code generated for other instantiations of the same generic. When the
second argument is FALSE each instantiation will get a unique copy of the generated code.
The extent to which code is shared between instantiations depends on this pragma and the
kind of gen,-c formal parameters declared for the generic unit.

1.2. EXTERNALNAME Pragma
The EXTERNAL-NAME pragma takes the name of a subprogram or variable defined in
Ada and allows the user to specify a different external name that may be used to reference
the entity from other languages. The pragma is allowed at the place of a declarative item
in a package specification and must apply to an object declared earlier in the same package
specification.

1.3. INTERFACE_0BJECT Pragma
The INTERFACE__BJECT pragma takes the name of a variable defined in another language
and allows it to be referenced directly in Ada. The pragma will replace all occurrences of
the variable name with an external reference to the second, link..jrgument. The pragma is
allowed at the place of a declarative item in a package specification and must apply to an
object declared earlier in the same package specification. The object must be declared as a
scalar or an access type. The object cannot be any of the following:

a loop variable.
a constant.
an initialized variable.
an array, or
a record.

2. Implementation of Predeftned Pragman
2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

B-2

% %1

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. INLINE
This pragma is implenrnted as described in A rppsdix B of the Ada RM.

24. INTERFACE
This pragma supports calls to 'C'. PASCAL, PLI, and FORTRAN functions. The Ada sub-
programs can be either functions or procedures. The types of parameters and the result
'.yy:! f,%" functions must be scalar. access or the predefined Lype ADDRESS in SYSTEM. An
,,io.|1 third argutent overrides the default link name. All parameters must have mode

" ' rd and array objects can 1,,! passed by reference using the ADDRESS attribute. S

2.S. LAST

This pragma is implemented as described in Appendix B of the Ada RM. .,

2.6. MEMORY_SIZE
This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

2.8. PACK
This pragma will cause the compiler to choose a non-aligned representation for composite N
types. Components that are smaller than a STORAGEUNIT are packed into a number of
bits that is a power of two. level.

2.9. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY *

This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED
This pragma is recognized by the implementation but has no effect.

2.12. STORAGEJUNIT
This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas. the SYSTEM package must be recompiled.

2.13. SUPPRESS
This pragma is implemented as described, except that RANGE_CHECK and J*
DIVISIONCHECK cannot be supressed. .'
2.14. SYSTEM_NAME
This pragma is recognized by the implementation. The implementation does not allow SYS-
TEM to be modified by means of pragmas. the SYSTEM package must be recompiled.

B-3

3. Implementation-Dependent Attributes

NONE-
4. Specification Of Package SYSTEM

package SYSTEVI
is

type NAIE' is (LMPS43):

SYSTIfM NAE constant NAVE : LMIPS43;

STORAGE LNIT : constant :-8;
.VET DRYSIZE : constant := 16 777_216;

.- System-Dependent 'amed Numbers

MIN_INT constant :- -2_147_483_648:
MAX_INT constant := 2_147_483_647;
MAXDIGITS : constant :-15:
MAXMANTISSA constant :- 31;
FINEDELTA constant :-.0*(-30);
TICK constant :-0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTWER range 0 .. 99:

MAX_REC_$IZE : integer :- 64*1024:

type AIDRESS is private:

INADDR : constant ADDRESS:

function PHYSICALJUDRESS(I: INT) return ADDRESS:
function ADDRGr(A. B: ADDRESS) return BOOLEAN:
function ADDRJ-T(A. B: ADDRESS) return BOOLEAN;
function ADDR_GE(A. B: ADDRESS) return BOOLEAN;
function ADDR_LE(A. B: ADDRESS) return BOOLEAN:
function ADDR_DIFF(A, B: ADDRESS) return INrH;ER:
function I1CRAEDR(A: ADDRESS; INIR: INTEGER) return ADIRESS;
function DECRADDR(A: ADDRESS: DECR: INTEGER) return ADDRESS:

function ">9(A. B: AIDRESS) return BOOLEAN renames AD R_GT;
function "-e(A. B: ADDRESS) return BOOLEAN renames ADDIR_LT;
function *>-*(A. B: ADDRESS) return BOOLEAN renames AEDR GE:
function '--"(A. B: ADDRESS) return BOOLEAN renames ADDRJ.E:
function "-"(A. B: ADDRESS) return INTEGER renames ADDRDIFF;
function *+*(A: ADDRESS; lINCR: INrEGER)

return ADDRESS renames INC(_AIDR;
function "-"(A: ADDRESS: DECR: INrEGER)

return ADDRESS renames DECR_ADDR;

pragma inl ine(ADDRGT);
pragma inline(ADDRJ.T);
pragma inline(ADDRGE):
pragma inline(ADRJ.E);

B-4

pragma inl ine(AIElR__DIFF):
pragma inline(INCR A1LR):
pragma inline(DECRAMXR):
pragma inline(PHYSICALA[URESS):

private

type AID2RESS is new integer:

'4) AMIR : constant ADDRESS :- 0:

:id S' STEM;

S. RAJebrtions On Representation Clauses

5.1. Pragma PACK

Array and record components that are smaller than a STORAGEUNIT are packed into a
number of bits that is a power of two. Objects and larger components are packed to the
nearest whole STORAGEUNIT.

3.2. Size Specification
The size specification T*SMALL is not supported except when the representation
specification given is the same as 'SMALL for the base type.

5.3. Record Representation Clauses
Components not aligned on even STORAGEUNIT boundaries may not span more than
four STORAGEUNITs.

5.4. Address Clauses

Address clauses are supported for objects and entries.

5.5. Interrupts

Interrupt entries (UNIX signals) are supported.

5.6. Representation Attributes

The ADDRESS attribute is not supported for the following entities:
Packages
Tasks
Labels
Entries

5.7. Machine Code Insertions
Machine code insertions are not supported.

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

B-5

7. Interpretation of Expressions in Address Clauses
The function PHYSICAL_.,DDRESS is defined in the package system to provide conver-
sion from INTEGER values to ADDRESS values.

8. Restrictio on Unchecked Conversions
There dre Lo re-iLcictions on the types with which the generic function
UNCHECKEDCONVERSION can be instantiated.

9. Implementation Characteristics of li) Packages
Insant; itions of DIRECT 10 use the value M,,XREC_$IZE as the iecord size (expressed
in .irrRAGE_UNITS) when the size of ET EIMENTTYPE exceeds that value. For example
for unconstrained arrays such as string where ELEMENT TYPE'SIZE is very large.
MAXRECSIZE is used instead. MAX_RECORD_5IZE is defined in SYSTEM and can be
changed by a program before instantiating DIRECTJO to provide an upper limit on the
record size. In any case the maximum size supported is 1024 x 1024 x STORAGEUNIT
bits. DIRECTJO will raise USEfRROR if MAXREC $IZE exceeds this absolute limit.
Instantiations of SEQUENTIALJO use the value MAX._JEC..IZE as the record size
(expressed in STORAGEUNITS) when the size of ELEMENTTYPE exceeds that value.
For example for unconstrained arrays such as string where ELEMENTTYPE'SIZE is very
large. MAX..REC.5IZE is used instead. MAXRECORD_3IZE is defined in SYSTEM and
can be changed by a program before instantiating INTEGER-O to provide an upper limit
on the record size. SEQUENTIALJO imposes no limit on MAXREC..IZE.

10. Implementation Limits
The following limits are actually enforced by the implementation. It is not intended to
imply that resources up to or even near these limits are available to every program.

10.1. Line Length
The implementation supports a maximum line length of 500 characters including the end
of line character.

10.2. Record and Array Sizes
The maximum size of a statically sized array type is 4.000.000 x STORAGEUNITS. The
maximum size of a statically sized record type is 4.000.000 x STORAGEUNITS. A record
type or array type declaration that exceeds these limits will generate a warning message.

10.3. Default Stack Size for Tasks
In the absence of an explicit STORAGE_.IZE length specification every task except the
main program is allocated a fixed size stack of 10.240 STORAGE_UNITS. This is the value
returned by T'STORAGE.$IZE for a task type T.

10A. Default Collection Size
In the absence of an explicit STORAGESIZE length attribute the default collection size for
an access type is 100,000 STORAGEUNITS. This is the value returned by
T'STORAGE.51ZE for an access type T.

10.5. Limit on Declared Objects
There is an absolute limit of 6.000.000 x STORAGEUNITS for objects declared statically
within a compilation unit. If this value is exceeded the compiler will terminate the

B-6

............ V 4 *

compilation of the unit with a FATAL error message.

B-7

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (1..498 => 'A', 499 => '1')
Identifier the size of the
maximum input line length withvarying last character.

$BIGID2 (1..498 :> 'A', 499 => '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (..249 => 'A', 250 :> '3', 251..499 => 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG ID4 (..249 => 'A', 250 => '4', 251..499 => 'A')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT._LIT (1..496 => '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..493 => '0', 494..499 => "69.OE1")
A r-eal literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..-479 => '

A sequence of blanks twenty
characters fewer than the size
'f the maximum line length.

$CVUNTLAST 2_147483647

A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDEDASCIICHARS "abcdefghijklmnopqrstuvwxyzl$%?@[\]^{'f2"
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD._LAST 2_147_483_647
A universal integer literal
whose value is TEXTIO.FIELD'LAST.

$FILE NAMEWITH.BADCHARS ,abcdef/ghijklmnop/qrstuvwxyz" &
An illegal external file name "1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ"
that either contains invalid
characters, or is too long if no

invalid characters exist.

$FILENAME_WITHWILD CARDCHAR "XYZ/ZYE"
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GR EATER THAN-DURATION 100000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASELAST 10_000_000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

, ,

TEST PARAMETERS

Name and Meaning Value

$ILLEGALEXTERNAL FILENAME1 "/no/such/directory"
An illegal external file name.

$ILLEGAL EXTERNAL FILE NAME2 "/no/such/directory"
An illegal external file name
that is diff>. cent from
$ILLEGALEXTERNALFILENAME 1.

$INTEGERFIRST -2_147_483648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGERLAST 2147_483647
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THANDURATION -100 000.0
A universal real value that lies

)

between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESSTHAN DURATIONBASE FIRST -10_000_000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 15
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAXIN_LEN 499
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAXINT 2_147_483_6i47
The universal integer literal
whose value is SYSTEM.MAX INT.

C-3

X.. '. . U

TEST PARAMETERS

Name and Meaning Value

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGZR,
LONGFLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NONASCII_ CHAR_TYPE (NONNULL)
An enumerated type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-4l

S.

.. V'**'~~~~N5

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "IS" is misspelled at line 45.

" C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

" C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINT-ERROR as expected in
the test.

• B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

• C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

B45116A: ARRPRIBLi and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line
41.

C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

B4AO10C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

-mmun

WITHDRAWN TESTS

" B74101B: The begin at line 9 causes a declarative part to be
treated as a sequence of statements.

" C87B50A: The call of "1=" at line 31 requires a use clause for
package A.

" C92005A: The "/=" for type PACK.BIGINT at line 40 is not visible
without a use clause for the package PACK.

" C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" BC3204C: The body of BC3204C0 is missing.

D

